Preface

The aim of this MSc project was to investigate the possibility of constructing a compact PC controlled hardware line simulator suitable for replacing the traditional twisted copper pair access cable as a test environment for ADSL and VDSL modems under design. The dissertation covers a wide range of subjects, ranging from investigation of the copper pair at DSL transmission frequencies, through to an in depth low-level initial design based on Xilinx FPGAs.

The main areas of the dissertation cover:

- The behaviour of the twisted copper pair at DSL frequencies in chapters 2 and 3.
- Simulation requirements and suitable signal processing methods in chapters 4 and 5.
- ANSL DMT ADSL signal modelling using Matlab in chapter 6.
- High level designs for ADSL simulators comparing DSP and FPGA solutions in chapter 7.
- A revised high level design using FPGA processing blocks in chapter 8.
- In depth low-level logic circuitry and functionality testing of the revised design using the latest Xilinx FPGAs in chapter 9.
- Possible extension to VDSL line simulation in chapter 10.

The low-level logic designs in chapter 9 assume the reader is conversant in designing Xilinx FPGAs using the Foundation design environment and includes complex logic designs without step by step explanation of their operation which is secondary to the aim of the project and dissertation. Included on the CD ROM are all Foundation schematic, simulation and waveform files associated with all the circuits of chapter 9.

In addition to the project design files for use in the Xilinx Foundation environment, the CD ROM also includes full data sheets in PDF format of all devices mentioned, as well as pertinent DSL tutorials from various sources and the latest Xilinx Foundation upgrade files necessary for the design. In order to compile and run simulations on the project designs, a minimum of 128 Mbytes of RAM is required, otherwise excessive hard disk activity occurs with the associated extended processing times.

Contents

Abstract	1
Preface	2
1 Introduction	12
2 The Twisted Copper Pair	15
2.1 Physical Line Characteristics	15
2.1.1 RLCG Characteristics at Extended Bandwidths	16
2.1.2 Propagation Constant and Characteristic Impedance	16
2.1.3 Insertion Loss	17
2.2 Crosstalk in ADSL and VDSL Systems	19
2.2.1 Additive Nature of Crosstalk	21
2.3 Guassian, Coloured and Impulsive Noise	22
3 ADSL / VDSL Technologies	23
3.1 ADSL	23
3.1.1 ADSL General Architecture	24
3.1.2 DMT Modulation	25
3.1.2.1 ANSI T1.413 DMT Specification	28
3.1.2.2 DMT Frequency Division Multiplexed ADSL	29
3.1.2.3 ADSL Lite	29
3.1.2.4 DMT Echo Cancelled ADSL	29
3.1.3 CAP Modulation	30
3.2 VDSL	31
3.3 ADSL and VDSL Data Rates and Reach	32
4 Line Simulator Requirements	34
4.1 Physical Line Characteristics	34
4.1.1 Insertion Loss	34
4.1.2 Phase Shift	36
4.1.3 Acceptable Phase and Magnitude Variations	38
4.2 Crosstalk	39
4.3 AGWN, Impulsive and Coloured Noise	39
4.4 ADSL Line Simulator Requirements	39

4.4.1 DMT ADSL	39
4.4.1.1 Transform Requirements due to Insertion Loss	40
4.4.1.2 Transform Requirements due to Phase Shift	40
4.4.1.3 Overall Transform Requirements	41
4.4.2 CAP ADSL	41
4.5 VDSL Line Simulator Requirements	41
4.6 Summary of Transform Requirements	42
5 Signal Processing Fundamentals	43
5.1 The Modelling Requirement	43
5.2 Signal Domains	44
5.2.1 Physical Line Effects	44
5.2.2 Crosstalk	46
5.2.3 Noise	47
5.2.3.1 Additive Gaussian White Noise	47
5.2.3.2 Coloured Noise	47
5.2.3.3 Impulsive Noise	48
5.2.4 Overall Simulation Model	48
5.3 Discrete Fourier Transform Specifics	50
5.3.1 DMT ADSL Fast Fourier Transform	51
5.3.2 CAP ADSL Fast Fourier Transform	51
5.3.3 VDSL Fast Fourier Transform	51
5.4 A/D and D/A Conversion	51
5.4.1 Theoretical ADC and DAC Precision	52
5.4.1 Practical ADC and DAC Precision	52
6 Matlab ADSL Signal Models and Transform Verification	54
6.1 QAM Signal Generation	54
6.1.1 Baseband QAM	55
6.1.2 Passband QAM	56
6.1.3 Extension to DMT	57
6.2 Sampling	57
6.3 Filtering	58
6.4 Basic Transform Verification	58
6.5 Extension to 'Simulator' Simulation	59
7 Initial ADSL Line Simulator Design	60
7.1 Line Simulator Block Functionality	60
7.2 Frequency Filter and FFT Implementation	62
7.2.1 Implementation Using DSPs	63
7.2.1.1 Speed Metric	63
7.2.1.2 Chip Packaging	64
7.2.1.3 Prototyping and Production Costs	65
7.2.1.4 Versatility	65
7.2.1.5 Future Adaptability to VDSL Line Simulation	65

7.2.2 Implementation Using FPGAs	66
7.2.2.1 Speed Metric	66
7.2.2.2 Chip Packaging	68
7.2.2.3 Prototyping and Production Costs	68
7.2.2.4 Versatility	68
7.2.2.5 Future Adaptability to VDSL Line Simulation	69
7.2.3 Preferred Implementation	69
7.3 Overall Line Simulator Design	69
7.3.1 FFT Core Input Data Conditioning	71
7.3.1.1 ADC – FFT Interface	71
7.3.1.2 IFFT – DAC Interface	72
7.3.2 FPGA Initialisation	74
7.3.3 PC Interface	74
7.3.4 Line Receiver and Transmitter Modules	74
7.3.5 ADC and DAC Converters	75
7.3.6 DAC Output Filtering	75
8 Revised ADSL Simulator Design	77
8.1 Overall Revised Simulator Design	77
8.2 Xilinx Reference FFT Design	79
8.2.1 FFT Reference Design I/O and Control Timing	81
8.3 Internal Memory Interfaces	81
8.3.1 Memory Interfaces – Justification	81
8.3.1.1 ADC – FFT FPGA Interface	83
8.3.1.2 FFT – Frequency Manipulation FPGA Interface	83
8.3.1.3 Frequency Manipulation – IFFT FPGA Interface	83
8.3.1.4 IFFT – Time Manipulation FPGA Interface	83
8.3.1.5 Time Manipulation FPGA – DAC Interface	84
8.3.2 Practical Memory Implementation	84
8.3.3 Memory Interfaces for PC I/O	85
8.3.4 Page Addressing for Memory Interfaces	86
8.4 Processing Operations' Timing	87
8.5 Analogue Front Ends	89
0 Detailed Law Lavel Design and Europtional Testing	00
9 1 FFT FDGΔ	90
9.1.1 Perinheral Circuit Requirements	92
9.1.2 Logic Design	92
9.1.2 Ebgie Design 9.1.3 FET FPGA Design Verification	92
9131 FET Reference Design Control Timing	92 Q/
9132 FET Reference Design Discrete Fourier Transform	04 Q/
9133 Input RAM Addressing and Control	94
9.1.4 FFT Performance	96
9 1 5 IFFT FPGA	96
9.2 Frequency Manipulation FPGA	97
>= requere, manparation r orr	71

9.2.1 Peripheral Circuit Requirements	97
9.2.2 Logic Design	98
9.2.2.1 Arithmetic Functions	98
9.2.2.2 Timing Functions	98
9.2.3 Functionality Testing and FPGA Placement	102
9.2.4 Performance	102
9.3 Time Manipulation FPGA	102
9.3.1 Peripheral Circuit Requirements	102
9.3.2 Logic Design	103
9.3.2.1 Arithmetic Functions	103
9.3.2.2 Timing Functions	103
9.3.3 Functionality Testing	103
9.4 Clock and Page Select Circuitry	103
9.4.1 Clock Signals	103
9.4.2 Memory Interface Paging	108
9.5 Memory Chips	108
9.5.1 Interface Memory	108
9.5.2 FFT / IFFT Scratchpad memory	109
9.6 Low Level Design Summary	109
10 Conclusions	111
10.1 The Modelling Requirement	111
10.1.1 Physical Line Effects	111
10.1.2 Crosstalk and Noise	113
10.2 Signal Processing Methods	113
10.3 DFT Requirements	114
10.4 Implementation Paths	115
10.5 ADSL Line Simulation Using FPGAs	116
10.6 Further Work	116
10.7 Towards a VDSL Line Simulator	117
Appendix 1 Calculation of Magnitude and Phase Characteristics of 26 Gauge	119
PIC Twisted Copper Pairs	
Appendix 2 Matlab Version 5 ginput Function	121
Appendix 3 KeyWave TM AFE (Product Preview)	122
Appendix 4 Xilinx FPGA Core Functions	125
Appendix 5 1024 Point FFT, Multiplying and Addition FPGA Cores	128
Appendix 6 Xilinx 1024 Point High Performance FFT Reference Design Data Sheet (pp1-4)	139
Appendix 7 E-mail correspondence with the author of the 1024 FFT Reference Design, Dr. Chris Dick of Xilinx	144

List of Figures

Chapter 2

Figure 2.1	Primary PIC twisted pair parameters	16
Figure 2.2	Insertion loss for 26 gauge PIC copper pair	18
Figure 2.3	Phase shift for 26 gauge PIC twisted copper pair	18
Figure 2.4	Phase shift for 26 gauge PIC copper pair over ADSL bandwidth	19
Figure 2.5	Common mode operation	20
Figure 2.6	Differential mode operation	20
Figure 2.7	Near End CrossTalk	20
Figure 2.8	Far End CrossTalk	21
Figure 2.9	Mythical DSL power spectra	21

Chapter 3

Figure 3.1	ADSL end to end model	24
Figure 3.2	QAM modulation of a sine and cosine carrier	25
Figure 3.3	QAM constellation for a sine + cosine symbol	26
Figure 3.4	Complete 4 QAM constellation	26
Figure 3.5	3 bin DMT modulation	27
Figure 3.6	ANSI T1.413 carrier spacing and PSDs	28
Figure 3.7	PSD mask for ANSI T1.413 FDM DMT ADSL	29
Figure 3.8	PSD mask for CAP ADSL	30
Figure 3.9	DMT / CAP power spectra comparison	31
Figure 3.10	VDSL spectral spreads	32
Figure 3.11	VDSL data rates and reach	32

Figure 4.1	Insertion loss range	35
Figure 4.2	Insertion loss for 12 kft twisted copper pair with overlay grid showing the first	
	Relevant frequency transform interval	36

38

Figure 4.3	Detailed phase response for 26 gauge pairs	
0		

Chapter 5

Figure 5.1	Time and frequency domain description of transmission process	44
Figure 5.2	Magnitude and controlled 90° phase shift of a single tone	45
Figure 5.3	Magnitude and controlled arbitrary phase shift of a single tone	46
Figure 5.4	Frequency and time domain crosstalk modelling	47
Figure 5.5	Impulsive noise waveform	48
Figure 5.6	Impulsive noise modelling	48
Figure 5.7	Overall simulation method	49
Figure 5.8	DFT and radix 2 FFT multiplication comparison	50

Chapter 6

Figure 6.1	Illustrative cosine and sine carrier amplitudes for QAM	55
Figure 6.2	QAM signals produced by the Matlab function gamdef	56
Figure 6.3	Sampled QAM signal produced by the Matlab function sampfreq	57

Chapter 7

Figure 7.1	ADSL line simulator functional block diagram	61
Figure 7.2	Hybrid DSP / FPGA solution	64
Figure 7.3	XC4000E chip speeds	67
Figure 7.4	XC4000XLA chip speeds	67
Figure 7.5	Multiplication by coefficients < 1	67
Figure 7.6	1024 point FFT Core interface pinout	69
Figure 7.7	Complete high level simulator design	70
Figure 7.8	Conceptual memory arrangement for time sample input to the FFT	71
Figure 7.9	Practical memory block and page structure	72
Figure 7.10	Circuit diagram for ADC and FFT Core interface	73
Figure 7.11	Digital timing diagram for ADC and input to FFT Core	73

Figure 8.1	Revised ADSL line simulator block diagram	78
Figure 8.2	FFT Reference Design pinout diagram	79
Figure 8.3	Timing diagram for FPGA FFT I/O, ADC and DACs	80
Figure 8.4	Conceptual memory page structure for ADC, DAC, FFT, IFFT and	
	Manipulation FPGAs	82

Figure 8.5	32-bit memory interface page structure for real and imaginary data vectors	85
Figure 8.6	16-bit memory interface page structure for real valued data vectors	85
Figure 8.7	Page addressing for 2 k-word dual port RAM	86
Figure 8.8	Digital timing diagram for memory page selection from the ADC clock	87
Figure 8.9	Independent operation timing for all six operations over a period of 6 time	
	sampling windows	88
Figure 8.10	KeyWave pinout diagram	89

Chapter 9

Figure 9.1	FFT additional control circuitry for time data input from the ADC – FFT	
	memory interface	91
Figure 9.2	Complete FFT transform engine design	93
Figure 9.3	Frequency manipulation addressing and read / write strobe	97
Figure 9.4	Frequency manipulation arithmetic functions	99
Figure 9.5	Frequency manipulation addressing and timing functions	100
Figure 9.6	Frequency manipulation complete circuit	101
Figure 9.7	Time manipulation arithmetic functions	104
Figure 9.8	Time and frequency manipulation complete circuit	105
Figure 9.9	External global clock generation	106
Figure 9.10	Memory interface paging circuitry	107

Figure 10.1	Insertion loss for 26 gauge PIC twisted copper pair	112
Figure 10.2	Phase shift for 26 gauge PIC twisted copper pair over ADSL bandwidth	112

List of Tables

Chapter 3

Table 3.1	ADSL performance figures	24	
Table 3.2	4 QAM bit to carrier amplitude mapping	26	
Table 3.3	VDSL performance targets	31	

Chapter 4

Table 4.1	Maximum insertion losses	35
Table 4.2	Insertion loss for various frequency transform resolutions	37
Table 4.3	Full phase rotation bandwidths for 26 gauge pairs	38
Table 4.4	DMT ADSL simulator transform requirements considering a maximum 10%	
	Insertion loss variation across the first relevant transform cell	40
Table 4.5	DMT ADSL simulator transform requirements considering phase shift	40
Table 4.6	Overall ADSL and VDSL simulation transform requirements	41

Chapter 7

Table 7.1	FFT execution times on various DSP architectures	63
Table 7.2	DSP packaging options	64

Table 8.1	Memory interface physical RAM implementations	84
Chapter 9		
Table 9.1	Pre and post place and route FFT performance	96
Table 9.2	Suitable memory interface devices	109

Chapter 10

Table 10.1FFT Transform Parameters

115