
77

Chapter 8

Revised ADSL Simulator Design

Although the words in Charles Dickens’s book Oliver Twist were written over one hundred years ago,

they deftly conveyed my feelings when on delivery of the Foundation and Core Generator software I

discovered that the FFT Core didn’t actually exist!

This chapter details the revised design of the line simulator using a Xilinx ‘Reference Design’ for a

1024 point FFT in place of the Core design. In addition to new memory interface circuitry between

FPGA blocks, a time manipulation FPGA after the IFFT and a new complete AFE at the final design

stage from Fujitsu including ADC, DAC and filtering are incorporated into the design.

8.1 Overall Revised Simulator Design

Figure 8.1 shows a block diagram of the overall revised line simulator design incorporating additional

time domain manipulation and integrated AFEs. The revised design builds on the transform principles

developed originally, with the only major change being the inclusion of the time manipulation block to

simulate time domain modeled noise components.

In contrast to the FFT Core which split its real 1024 input data points into two blocks (t(0) to t(511) and

then t(512) to t(1023)), the FFT Reference Design splits the real and imaginary components of both

input and output vectors into two separate continuous blocks.

‘Oliver wasn’t as altogether happy as the lucky pig that accidentally
 got locked into the malt house of the local brewery.’

Charles Dickens

Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

78

Figure 8.1 Revised ADSL line simulator block diagram

ADSL Samples
For Crosstalk

Time
Addition Vectors

Frequency
Multiplication &
Addition Vectors

ADSL Modem (Tx)

POTS Splitter

POTS Splitter

SPROM

SPROM

SPROM

SPROM

A
D

SL
 S

am
pl

es
Fo

r
C

ro
ss

ta
lk

C
on

tr
ol

M
ul

tip
lic

at
io

n
&

B
ot

h
A

dd
iti

on
 V

ec
to

rs

32-bit Dual
Port RAM
Interface

Frequency

Manipulation

FPGA

AFE
(Including ADC
@ 4.416 MSPS)

32-bit Dual
Port RAM
Interface

1024 Point

IFFT

FPGA

16-bit Dual
Port RAM
Interface

Time

Manipulation

FPGA

AFE
(Including DAC
@ 4.416 MSPS)

16-bit Dual
Port RAM
Interface

32-bit Dual
Port RAM
Interface

16-bit Dual
Port RAM
Interface

16-bit Dual
Port RAM
Interface

1024 Point

FFT

FPGA

PC

Interface

Blue
 Real Data

Red
 Imag’ Data

32-bit Dual
Port RAM
Interface

ADSL Modem (Rx)

Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

79

8.2 Xilinx Reference FFT Design

The full data sheet for the 1024 point FFT Reference Design from Xilinx may be viewed on the

enclosed CD. The most salient first four pages are included in appendix 6. The most notable differences

between the new Reference Design and the original FFT Core are as follows

• Radix 4 operation.

• Real and imaginary input and output data vector separation.

• The design requires two banks of 1 k-byte 32-bit external scratch pad RAM.

• Increased processing speed, reducing block processing to within 100 µs.

• Considerably increased CLB count, targeting XC4062 or larger devices.

Figure 8.2 shows the FFT Reference Design pin-out diagram.

Figure 8.2 FFT Reference Design pin-out diagram

Chapter 8 Revised ADSL Line Simulator Design Andrew Wilkinson

80

19

AD/DA_DAT
A

AD/DA_DAT
A

AD/DA_CLK

XK_R[16] (FFT output)

IO_CYCLE

RESULT

XK_I[16] (FFT output)

K[10]

DONE

FFTCLK

Figure 8.3 Timing diagram for FPGA FFT I/O, ADC and DACs

Complete FFT Process – 5206 CLK Cycles

Final FFT Butterfly Rank Process
Output 1024 Complex ResultsFirst 4 FFT Butterfly Rank Processes

≈

xR(0) xR(256) xR(512) xR(768) xR(64) xR(320) xR(832)xR(576) xR(255) xR(767)xR(511)

≈

xI(0) xI(256) xI(512) xI(768) xI(64) xI(320) xI(832)xI(576) xI(255) xI(767)xI(511)

≈

0 256 512 768 64 320 832576 255 767511

≈

xR(0) xR(256) xR(512) xR(768) xR(64) xR(320) xR(832)xR(576) xR(255) xR(767)xR(511)

≈

xI(0) xI(256) xI(512) xI(768) xI(64) xI(320) xI(832)xI(576) xI(255) xI(767)xI(511)

≈

0 256 512 768 64 320 832576 255 767511

AD/DA_CLK

XK_R[16]

IO_CYCLE

RESULT

XK_I[16]

K[10]

DONE

CLK

DR[16]

DI[16]

DR[16] (FFT input)

Load New 1024 Complex
Data Points for Next Block

≈
≈

DR(0) DR(1) DR(2) DR(3) DR(4) DR(5) DR(7)DR(6) DR(1021) DR(1023)DR(1022)

≈
≈

DI(0) DI(1) DI(2) DI(3) DI(4) DI(5) DI(7)DI(6) DI(1021) DI(1023)DI(1022)

≈
≈

DR(0) DR(1) DR(2) DR(3) DR(4) DR(5) DR(7)DR(6) DR(1021) DR(1023)DR(1022)

≈
≈

DI(0) DI(1) DI(2) DI(3) DI(4) DI95) DI(7)DI(6) DI(1021) DI(1023)DI(1022)

21 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 5204 5205 5206 214179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 5204 5205 5206

Process Block X
Process Input Data Block X

Write Output DFT Data Block X
Read Input Data Block X + 1

Process Block X – 1
Process Input Data Block X – 1

Write Output DFT Data Block X – 1
Read Input Data Block X

Process Block X + 1
Process Input Data Block X + 1

Write Output DFT Data Block X + 1
Read Input Data Block X + 2

1 2 3 11023 10241023 1024

x(0) x(1) x(2) x(1022) x(1023)x(1021)x(3)

10231023

≈
≈

x(1022) x(1023) x(0)

1024 Data Samples – 1024 AD/DA_CLK Cycles

DI[16] (FFT input)

Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

81

8.2.1 FFT Reference Design I/O and Control Timing

Figure 8.3 summarises the published I/O and control timing for the FFT Reference Design. The main

points impacting the supporting circuitry are

• The FFT process consists of five Butterfly rank operations.

• The total FFT process requires 5206 FFTCLKS: 5 x 1024 Butterfly rank clock cycles, 17

clock cycles before each rank and one more at the start of each FFT operation.

• During the final rank process, the result is output whilst at the same time, data for the next

FFT block operation is read into one of the scratch pad RAM blocks, alternating between

blocks A and B on subsequent FFT transforms due to the odd number of Butterfly ranks.

• The real and imaginary components of each of the 1024 samples are accessed or output at

the same time, thus requiring only one address bus for each block of scratchpad RAM and

output data buses.

• The FFT doesn’t address the input RAM, the latter is required to produce its data in

chronological order and to the specified timing during the final Butterfly rank process,

whereas the FFT actively addresses the data components of the output results through the

use of a de-scrambling index bus, K.

• Periphery devices are notified of the FFT’s need for new input data or its intention to

write new results through the control strobes: DMA_CYCLE, IO_CYCLE, RESULT and

DONE.

• The FFTCLK theoretically operates at upto 68 MHz, giving a clock period of 15 ns.

8.3 Internal Memory Interfaces

In the initial simulator design, the difference between time sample ordering and generation rate at the

DAC’s output and the required ordering and input rate to the FFT Core gave rise to the need for

memory buffering between the two, operating on a pipelined block processing approach.

Implementation using paged dual port RAM interfaces was developed. A similar situation occurs using

the Reference Design. Conceptually, the full ordering and rate conversion scheme is shown in figure

8.4. Each page of dual port RAM contains 1024 16-bit locations.

8.3.1 Memory Interfaces - Justification

Fast dual port RAM is expensive, so should only be used where necessary. The following five sub-

sections explain why dual port memory buffering is necessary between the ADC, FFT, frequency

manipulation FPGA, IFFT, time manipulation FPGA and DAC. Reference to the top of figure 8.3

should be made for the control logic timing for the FFT Reference Design and the bottom of the same

figure for general parallel flash A/D and D/A conversion processes when the FFT processing time and

time sampling window are exactly the same.

Chapter 8 Revised ADSL Line Simulator Design Andrew Wilkinson

82

Figure 8.4 Conceptual memory page structure for ADC, DAC, FFT, IFFT and manipulation FPGAs
(All data lines 16-bit wide)

Time Manipulation FPGA – DAC
Memory Interface

Analog Output

Analog Input

IFFT – Time Manipulation FPGA
Memory Interface

Frequency Manipulation FPGA – IFFT
Memory Interface

Real
Page

1

Real
Page

2

Imag
Page

1

Imag
Page

2

Real
Page

1

Real
Page

2

Real
Page

1

Real
Page

2

Imag
Page

1

Imag
Page

2

IFFT

FPGA

FFT

FPGA

DR XR

XI

DR XR

XIDI

DR XR

DI

FFT – Frequency Manipulation FPGA
Memory Interface

Real
Page

1

Real
Page

2

DR XR

Real
Page

1

Real
Page

2

ADC – FFT
Memory Interface

ADC

DAC

Fr
eq

ue
nc

y
M

an
ip

ul
at

io
n

FP
G

A

T
im

e
M

an
ip

ul
at

io
n

FP
G

A

Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

83

8.3.1.1 ADC – FFT FPGA Interface

From the ADC, time samples are output in chronological order (x(0), x(1),…,x(1023)) and generated

at a rate of 1 sample every ADCLK (4.416 MHz), bottom of figure 8.3. The FFT Reference Design

requires its 1024 point input data vector split into real and imaginary components then also reads them

in chronological order, one sample every FFTCLK (≈50 MHz), top of figure 8.3. The real – imaginary

split isn’t a problem between the ADC and FFT FPGA as the time samples are purely real, but the

difference in ADC write and FFT read rates requires sample rate conversion through a memory

interface with pipelined block processing.

8.3.1.2 FFT – Frequency Manipulation FPGA Interface

Unlike common radix 2 bit reversed output ordering, the real and imaginary radix 4 FFT output

frequency samples are in the digit reversed order1 of the form

This order is shown in figure 8.3. These samples are read by the processing FPGA and, if not for the

mismatch in inter-sample FFT write time and manipulation processing delay, could be manipulated in

the order they are produced by the FFT FPGA. The low level designs of chapter 9 will show that 16-bit

multiplication and addition takes approximately 114 ns using Core multipliers and adders (8

PRIMARY_CLKs). However, frequency samples from the FFT FPGA are written once every 29 ns (1

35 MHz FFTCLK) during the last 1024 FFTCLKs of the complete 5206 cycle FFT operation, figure

8.3. Therefore, the frequency samples cannot be manipulated at the rate the FFT FPGA writes them, so

memory buffering for pipelined operation is also required between the FFT and manipulation FPGAs.

8.3.1.3 Frequency Manipulation – IFFT FPGA Interface

The (I)FFT Reference Design requires chronologically ordered input vectors, (X’(0),

X’(1),…,X’(1023)) and reads one sample per FFTCLK during the final 1024 IFFT cycles, figure 8.3.

Because the rate at which the manipulation FPGA can write modified frequency samples is limited by

the total manipulation delay of 114 ns, pipelined block processing is required for the manipulation

process and IFFT, with a similar paged dual port RAM solution between the two FPGAs.

8.3.1.4 IFFT – Time Manipulation FPGA Interface

The output from the IFFT will be purely real (unless multiplication of the positive and negative

frequency samples is by non complex conjugate pairs which would result in complex time samples

which can’t be converted to a physical time signal by the DAC anyway) and in the radix 4 order. The

output from the IFFT includes a sample index bus (K in figure 8.3) specifically to de-scramble the

9...,,1,0},0,1{],,,,,,,,,[]10[8967452301 =∈= iaaaaaaaaaaaA i

Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

84

IFFT output vector, so reordering should occur immediately after the IFFT, justifying the IFFT time

manipulation memory interface.

8.3.1.5 Time Manipulation FPGA – DAC Interface

The DAC requires chronologically ordered samples, spaced by 1 DACLK (equal to the ADCLK). Re-

ordering has already been accomplished and sample output rate conditioning could also be done

through careful timing via the previous memory interface, but without a memory buffer implementing

the block processing approach between the time manipulation FPGA and DAC, the length of time that

samples can spend being processed in the FPGA will be constrained by the DAC data input

requirement of evenly spaced samples at the rate of one per DACLK. In future design developments,

depending on what new operations are configured for the time manipulation FPGA, the time processing

delay may increase from that of simple addition. In order to allow maximum flexibility, a memory

buffer is included between the time manipulation FPGA and DAC, allowing the whole 232 µs block

processing window to be available for manipulation operations on the 1024 real time samples.

8.3.2 Practical Memory Implementation

Practically, the page structure for each of the five interfaces can be implemented in a variety of ways.

Since the real and imaginary components of each vector are always read or written in the same order

and at the same time by any of the four FPGAs (e.g. for the dc frequency component, the FFT FPGA

writes XR(0) and XI(0) at the same time, figure 8.3), only one address bus for each side of each memory

interface is required for both real and imaginary memory blocks. One complex component can be

stored in the least significant 16-bits and the other in the most significant 16-bits of each 32-bit

memory location. Table 8.1 shows some possible RAM implementations. Figure 8.5 shows the page

structure for complex data vectors using a single 2048 location, 32-bit dual port memory chip and

figure 8.6 for a single 2048 location, 16-bit memory chip for the real valued data vectors.

ADC – FFT Interface

IFFT – Time Manipulation Interface

Time Manipulation – DAC Interface

(real data only)

FFT – Frequency Manipulation Interface

Frequency Manipulation – IFFT Interface

(real and imaginary data)

2 x 1024 locations, 16-bit
2 x 1024 locations, 16-bit (for real data)

2 x 1024 locations, 16-bit (for imag data)

(16 MSBs for real data)
2 x 1024 locations, 32-bit

(16 LSBs for imag data)

(16 MSBs for real data)
1 x 2048 locations, 16-bit 1 x 2048 locations, 32-bit

(16 LSBs for imag data)

Table 8.1 Memory interface physical RAM implementations

Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

85

8.3.3 Memory Interfaces for PC I/O

The I/O requirements for PC control are similar to the initial design, with an extra set of 1024 point real

addition vectors for the time domain manipulation required from the PC every 232 µs sampling period

window. In order to allow data to be read by the FPGAs during the current processing time window

whilst the PC downloads values for the next, dual port RAM buffering offering paged operation similar

to that previously described can be used. The memory interfaces for PC I/O also provide sample rate

transfer control to both manipulation FPGAs, simplifying the download timing demands on the PC.

With paged memory buffering, the PC only has to download the full set of 512 complex conjugate

multiplication coefficients, 512 complex conjugate frequency addition components and 1024 real time

addition components within each 232 µs sampling window. The PC doesn’t have to download the data

Page 1

Location 16 MSBs16 LSBs

1025

1026

1024 DRealx+1(0)

DRealx+1(1)
DRealx+1(2)

DImagx+1(0)

DImagx+1(1)
DImagx+1(2)

2046

2047

2045 DRealx+1(1021)

DRealx+1(1022)
DRealx+1(1023)

DImagx+1(1021)

DImagx+1(1022)

DImagx+1(1023)

01

02

00 DRealx(0)

DRealx(1)
DRealx(2)

DImagx(0)

DImagx(1)
DImagx(2)

1022

1023

1021 DRealx(1021)

DRealx(1022)
DRealx(1023)

DImagx(1021)

DImagx(1022)
DImagx(1023)

Page 2

Figure 8.5 32-bit memory interface page structure
for real and imaginary data vectors

Location

1025

1026

1024

2046

2047

2045

01

02

00

1022

1023

1021

DRealx+1(0)

DRealx+1(1)
DRealx+1(2)

DRealx+1(1021)

DRealx+1(1022)
DRealx+1(1023)

DRealx(0)

DRealx(1)
DRealx(2)

DRealx(1021)

DRealx(1022)
DRealx(1023)

Page 1

Page 2

Figure 8.6 16-bit memory interface page structure
for real valued data vectors

2048 x 32-bit Dual Port RAM Chip 2048 x 16-bit Dual Port RAM Chip

32 bits 16 bits

Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

86

to satisfy the specific timing requirements of each of the manipulation blocks, nor does it have to

upload the crosstalk samples from the FFT block according to their rate of production.

The great advantage of incorporating these PC I/O memory interfaces is to allow future work to define

the timing for the PC interface independently of the simulator’s internal processing operations. Figure

8.1 also shows all the necessary components for PC I/O, which can be practically implemented as

shown in figure 8.5 and 8.6 for the complex and real data vectors.

8.3.4 Page Addressing for Memory Interfaces

In chapter 7, memory page selection was accomplished very neatly through simply deriving a

PAGESELECT signal from the ADC clock. For two 1024 location memory pages (2048 location RAM

chip), the ADCLK should be divided by 2048 and this signal used to drive the most significant address

pin of one side of the 2048 location RAM chip with the other side’s most significant address pin being

driven by its logical inverse, shown below in figure 8.7 and 8.8. With this configuration, the opposite

sides of the dual port RAM are always being written to, or read from, different pages in the paged

storage space. Chapter 9 will present a low level design capable providing synchronous ADC, DAC,

FFT, IFFT and PAGESELECT clocks from a single master oscillator.

PAGESELECT

Address Left

Imaginary Data In

Real Data In DL0

DL15

DL16

DL31

AL0

AL9

AL10

 CLKL

 DR0

 DR15

 DR16

 DR31

 AR0

 AR9

 AR10

 CLKR

16

16

16

16

16

16

PAGESELECT

Real Data Out

Imaginary Data Out

Address Right

2048 x 32-bit Dual Port RAM Chip

Figure 8.7 Page addressing for 2 k-word dual port RAM

Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

87

8.4 Processing Operations’ Timing

Each of the six processing operations (A/D conversion, FFT, frequency manipulation, IFFT, time

manipulation, D/A conversion) will be driven by a different frequency clock and will each require a

different number of cycles of that clock to complete. That is, the FFT and IFFT operations will be

driven by a clock at around 50 MHz and require 5206 cycles, the A/D and D/A conversion operations

will be driven by a 4.416 MHz clock and require 1024 cycles whereas the manipulation processes will

be driven by clocks at around 100 MHz and require a different number of cycles to complete depending

on the internal logic design. Once memory interfaces are placed between each of the six processing

blocks, the blocks can operate separately within each time sampling window period. The only

constraint on each operation is that it must be completed before the start of the next time sampling

window. This greatly eases logic design as each block can be designed to function independently of the

others’ internal timing. Figure 8.9 shows how each operation can take different periods to complete, but

all within the fixed 232 µs time sampling window and also shows the passage of blocks of time

samples through the simulator’s six functional operations. Clearly, a time sample taken by the ADC at

time T0 will be leave the simulator from the DAC 5 sampling windows later.

As mentioned, the operational isolation by memory interfaces allows each functional block to be driven

at its own internal rate, allowing future development of the manipulation blocks without impacting on

the conversion and transform blocks. A single external high frequency master clock can be divided to

drive the AFEs at 17.664MHz, the FFT and IFFTs at around 50 MHz (depending on final logic delays

within the placed FPGA). And the manipulation blocks’ clocks at around 100 MHz, again depending

on the net delays within the FPGAs they are implemented in. All clocks should be chosen to be

multiple of the AFE’s 17.664 MHz clock to allow simple generation by division of the master.

Figure 8.8 Digital timing diagram for memory page selection from the ADC clock

0 1 511 512 1023 1024 1535 1536 2047 2048

ADCLK

PAGESELECT

232 µs

Chapter 8 Revised ADSL Line Simulator Design Andrew Wilkinson

88

0

T0 + 232 T0 + 464 T0 + 696 T0 + 928 T0 + 1160

ADC block X

FFT block X - 1

IFFT block X - 3

Freq’ Manip block X - 2

ime Manip block X - 4

DAC block X - 5

ADC block X + 1

FFT block X

IFFT block X - 2

Freq’ Manip block X - 1

Time Manip block X - 3

DAC block X - 4

ADC block X + 2

FFT block X + 1

IFFT block X - 1

Freq’ Manip block X

Time Manip block X - 2

DAC block X - 3

ADC block X + 3

FFT block X + 2

IFFT block X

Freq’ Manip block X + 1

Time Manip block X - 1

DAC block X - 2

ADC block X + 4

FFT block X + 3

IFFT block X + 1

Freq’ Manip block X + 2

Time Manip block X

DAC block X - 1

ADC block X + 5

FFT block X + 4

IFFT block X + 2

Freq’ Manip block X + 3

Time Manip block X + 1

DAC block X

Time µs

Sampling Window X Sampling Window X + 1 Sampling Window X + 2 Sampling Window X + 3 Sampling Window X + 4 Sampling Window X + 5

Figure 8.9 Independent operation timing for all six operations over a period of 6 time sampling windows

Chapter 8 Revised ADSL Simulator Design Andrew Wilkinson

89

8.5 Analogue Front Ends

Shown in appendix 3 is the advance product preview of the Fujitsu KeyWave AFE. At present the full

data sheet is commercially confidential, but the device is known to be suitable for use in the line

simulator. The pin-out is shown below in figure 8.10.

From the product preview, it is apparent that the IC:

• Is designed as a complete solution for both receivers and transmitters.

• Contains programmable low pass filters with cutoff frequencies upto 1.2 MHz.

• Has dual internal 16 bit 4.416 MSPS ADCs and DACs which can be configured to sample at 4.416

or 8.832 MSPS.

• Has an active rising edge read – write strobe for writing and reading to and from external memory

• Requires a 17.664 MHz external clock signal for timing.

• Only requires an external power line driver and hybrid transformer for connection to a twisted

copper pair.

The Keywave AFE is ideal for both the receiver and transmitter front ends of the line simulator.

References

1 E. Oran Brigham, “The Fast Fourier Transform and Its Applications”, Prentice Hall, 1988, p140.

Figure 8.10 KeyWave pinout diagram

